
The materials in this Lecture is based on the first half of Chapter 10 of the
recommended textbook, “Digital Image Processing” by Gonzalez and Woods.

This lecture is all about detecting features, particularly boundaries, lines and edges.
The technique described here are based on two most important ideas: derivatives
and gaussian function. Features are usually found by discontinuity in intensity,
which derivatives help to find. However derivatives has the tendency to emphasize
noise, thus creating artifacts and spurious features. Gaussian function is important
in reducing these negative aspects of derivatives by smoothing noise and abrupt
changes.

Lecture 8 Slide 1PYKC 18 Feb 2025 DE4 – Design of Visual Systems

8 – Feature Detection

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE4_DVS/
E-mail: p.cheung@imperial.ac.uk

We have already covered first- and second-order derivatives in Lecture 5 slides 13 and
14 briefly. In 1-D case, i.e. for a row of pixels, first order derivative is calculated using
the so-call difference equation: i.e. finding differences between neighbourhood pixels.
If the current 1D pixel is at location x, then first order derivative is calculated by the
difference between the two neighbours at x+1 and x-1. Hence the equation is (f(x) is
the intensity value at location x:

Similar, for 2nd order derivative, the equation is given by:
𝜕𝑓! 𝑥
𝜕𝑥! = 𝑓"" 𝑥 = 𝑓 𝑥 + 1 − 2𝑓 𝑥 + 𝑓(𝑥 − 1)

We very rarely use 3rd order derivatives. It is given here for completeness.

𝜕𝑓 𝑥
𝜕𝑥 = 𝑓" 𝑥 =

𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)
2

Lecture 8 Slide 2PYKC 18 Feb 2025 DE4 – Design of Visual Systems

What is meant by “discontinuity”?
! Discontinuity in intensity is normally identified by the 1st order and 2nd order

derivatives (lecture 5 slides 13, 14).
! We use central difference to compute the 1st order derivative as:

𝜕𝑓 𝑥
𝜕𝑥

= 𝑓 ! 𝑥 =
𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)

2

! The 2nd order derivative is given by:

𝜕𝑓" 𝑥
𝜕𝑥"

= 𝑓 !! 𝑥 = 𝑓 𝑥 + 1 − 2𝑓 𝑥 + 𝑓(𝑥 − 1)

! We rarely use 3rd order derivatives. Nevertheless, here it is just for information:
𝜕𝑓! 𝑥
𝜕𝑥!

= 𝑓""" 𝑥 =
𝑓 𝑥 + 2 − 2𝑓 𝑥 + 1 + 2𝑓 𝑥 − 1 − 𝑓(𝑥 − 2)

2

Here are the coefficients (i.e. constant multipliers for neighbouring pixel intensities)
for calculating the central digital derivatives.

Lecture 8 Slide 3PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Digital Derivatives - coefficients
! To generalise, here is a table of the first four central digital derivatives

coefficients:

Just to illustrate how image intensity affects derivatives, this slide shows an image and
a cross-section along the red line. The intensity values are plotted on the right.

Below is a diagram showing which is the ramp, point, line and step features at the
cross-section.

Below are the first and second derivatives showing what results these will provide.

As can be seen, it is rather easy to spot the point, line and step using these derivative
values.

Lecture 8 Slide 4PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Cross section of an image & derivatives

To detect a point, we can perform Laplacian at (x,y), i.e. calculate the following:

For uniform intensity area, the value is 0. However, for a point intensity, this will
compute to a large negative value. So, we can detect a point by perform spatial
filtering, or convolution of the image with the filter kernel as shown on the left. The
coefficients are negated so that a point will give a large positive value.

Alternatively and even better, we can use the kernel shown on the right, which detect
a point discontinuity in all eight directions (x, y and two diagonals).

∇!𝑓 𝑥, 𝑦 =
𝜕!𝑓
𝑑𝑥! +

𝜕!𝑓
𝑑𝑦! = 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 4𝑓(𝑥, 𝑦)

Lecture 8 Slide 5PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Detection of Isolated point
! The obvious approach is to perform spatial filtering with a kernel that compute

the 2nd order derivative (also called the Laplacian):

∇"𝑓 𝑥, 𝑦 =
𝜕"𝑓
𝑑𝑥"

+
𝜕"𝑓
𝑑𝑦"

= 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 4𝑓(𝑥, 𝑦)

! This is equivalent to performing convolution with the filter kernel, but negate
the output:

0

0 0

0-1

-1

-1-1 4

-1

-1 -1

-1-1

-1

-1-1 8
or

Next type of feature would have been a line. However, we will jump straight to edges
because one can consider edges are general lines. For example, a line that is more
than one pixel wide is effective two steps or one roof edge.
The slide above shows three types of edges: a step, a ramp and a roof edge. These
three types can be found in a typical image such as the X-ray image of a head. The
three types of edges are identified.

Lecture 8 Slide 6PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Three types of edges

The first derivative can be used to detect the presence of an edge at a point in an
image. Similarly, the sign of the second derivative can be used to determine whether
an edge pixel lies on the dark or light side of an edge.
Two additional properties of the second derivative around an edge are:
(1) it produces two values for every edge in an image; and
(2) Its zero crossings can be used for locating the centres of thick edges.
Some edge models utilize a smooth transition into and out of the ramp. Finally,
although attention thus far has been limited to a 1-D horizontal profile, a similar
argument applies to an edge of any orientation in an image. We simply define a profile
perpendicular to the edge direction at any desired point and interpret the results in
the same manner as for the vertical edge just discussed.

Lecture 8 Slide 7PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Edge detection using derivatives

The first derivative can be used to detect the presence of an edge at a point in a given
direction such as x and y. Shown in this slide are two kernels known as Sobel edge
detector. The top kernel detects horizontal edges while the second kernel detects
vertical edges. These are both based on unidirectional 1st derivatives.

Sobel edge detector has many limitations. It is not isotropic meaning that it is sensitive
to the direction of the feature. It is also not adjustable to feature size. For single pixel
edge, it works reasonably well. However for thicker edges, this does not work at all.
So we need something that can be adjust to the size of the feature.

Lecture 8 Slide 8PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Sobel Edge detector kernels

𝑔# =
𝜕𝑓
𝑑𝑥

= 𝑤$ + 2𝑤% + 𝑤& − (𝑤' + 2𝑤" + 𝑤()

𝑔) =
𝜕𝑓
𝑑𝑦

= 𝑤(+ 2𝑤* + 𝑤& − (𝑤' + 2𝑤+ + 𝑤$)

The first derivative are image scale dependent. This means that detection of edges
using derivatives alone requires using operators of different sizes, and a sudden
intensity change will give rise to a peak or trough in the first derivative and a zero
crossing in the second derivative. That is why Sobel edge detectors do not work well.
A good edge detection should have two salient features:
1) it should be a differential operator capable of computing a digital approximation of

the first or second derivative at every point in the image;
2) It should be capable of being “tuned” to act at any desired scale, so that large

operators can be used to detect blurry edges and small operators to detect sharply
focused fine detail.

The most appropriate operator fulfilling these conditions is the 2-D Gaussian filter
function given by the filter ∇!𝐺, where G is:

𝐺 𝑥, 𝑦 = 𝑒#
$,%&,
!',

with 𝜎 being the standard deviation (or called space constant) adjustable to determine
the size of the operator.
By performing differentiation, it can be shown that the Laplacian of a Gaussian (LoG) is
give by:

∇!𝐺 𝑥, 𝑦 =
𝑥! +𝑦! −2𝜎!

𝜎(𝑒#
$,%&,
!',

Lecture 8 Slide 9PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Laplacian of a Gaussian (LoG) edge detector (1)
! Marr-Hildreth proposed an edge detector which is has two properties:

1. Compute 1st or 2nd derivative at every point in the image
2. Capable of being “tuned” to any scale or size

! The operator they proposed is the Laplacian (or 2nd derivative) of a Gaussian
function.

! A 2D Gaussian function is defined as:

𝐺 𝑥, 𝑦 = 𝑒-
##.)#
"/#

! The Laplacian of a Gaussian (LoG) is defined as:

∇"𝐺 𝑥, 𝑦 =
𝑥" + 𝑦" − 2𝜎"

𝜎+
	𝑒-

##.)#
"/#

The top-left figure in the slide is a 3-D plot of the negative of the LoG function..
The image on the top-right is the image of the 3-D plot.
The plot on the bottom-left is the cross-section of the negative of the LoG through the
centre in any direction. Note that the zero crossings of the LoG occur at 𝑥! +𝑦! =
2𝜎! which defines a circle of radius 2𝜎 centred on the peak of the Gaussian function.
The bottom-right diagram shows a 5 × 5 kernel that approximates the shape if of the
negative of the LoG function. This approximation is not unique. Its purpose is to
capture the essential shape of the LoG function. It consists of a positive, central term
surrounded by an adjacent, negative region whose values decrease as a function of
distance from the origin, and a zero outer region. The coefficients must sum to zero so
that the response of the kernel is zero in areas of constant intensity.
Filter kernels of arbitrary size (but fixed 𝜎) can be generated by sampling the negative
LoG function, and scaling the coefficients so that they sum to zero.
A more effective approach for generating a LoG kernel is sampling the function:

𝐺 𝑥, 𝑦 = 𝑒#
$,%&,
!',

with appropriate 𝜎, then convolving the resulting array with a Laplacian kernel, such as
the kernel in slide 7.

Lecture 8 Slide 10PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Laplacian of a Gaussian (LoG) edge detector (2)

The application of LoG can be done in two different ways. However, due to the linear
nature of both the Laplacian and the convolution operations, the preferred way is to:
1. Apply Gaussian smoothing filter by convoluting the image with a Gaussian kernel.

This low pass filter the image and remove noise, but blurring edges (a bit).
2. Compute the Laplacian of this result where edges are highlighted.
3. Identify the edges by determining the zero crossing of the resulting image.

Matlab Image Processing Toolbox has a function edge which allows the LoG operation
to be perform without you need to do the steps yourself.

Lecture 8 Slide 11PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Steps of the LoG algorithm
! The LoG algorithm includes these steps:
1. Convolving the LoG kernel with the image: 𝑔 𝑥, 𝑦 = ∇"𝐺 𝑥, 𝑦 ⋆ 𝑓 𝑥, 𝑦 .
2. Find the zero crossing of 𝑔 𝑥, 𝑦 to find the locations of edges in 𝑓 𝑥, 𝑦

! Since both the Laplacian and convolution operations are linear, we get:
𝑔 𝑥, 𝑦 = ∇"𝐺 𝑥, 𝑦 ⋆ 𝑓 𝑥, 𝑦 = ∇" 𝐺 𝑥, 𝑦 ⋆ 𝑓 𝑥, 𝑦

! This implies that we can achieve the same results by:
1. Smooth the image with a Gaussian filter using convolution.
2. Compute the Laplacian of the results.
3. Find the zero crossing of the output of the Laplacian.

Shown on top-left is a grayscale image of the front of a building.
After applying the Laplacian of a Gaussian, we get the top-right image which show the
lines in the image in black lines (zero-crossing).
The bottom-left image is to determine zero-crossing using threshold of 0, but it
generates lots of spurious features due to noise in image.
The bottom-right image is using a threshold of 4% of maximum value in 𝑔(𝑥, 𝑦) to
obtain the zero-crossings. The noise is gone and edges are highlighted.
This is still not an ideal result. There is better and probably most used edge detection
technique used for visual information processing known as the Canny edge detector.
We will consider this next.

Lecture 8 Slide 12PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Example of using LoG for edge detection

𝑓(𝑥, 𝑦) LoG output
𝑔(𝑥, 𝑦)

Zero crossing
threshold = 0

Zero crossing
threshold =
4% of max
intensity of g

The Canny edge detector is one of the best and most popular edge detection
algorithm. There are the five steps shown above in the slide.

Lecture 8 Slide 13PYKC 18 Feb 2025 DE4 – Design of Visual Systems

The Canny Edge Detector
! The Canny edge detector is based on three objectives:

1. Low error rate: find all edges with no false and spurious results.
2. Well localized edge points: location of edge points actually on edges.
3. Single edge point response: return only one point for each true edge point.

! To achieve these objectives, Canny detector applies five steps:
1. Apply Gaussian filter to smooth the image, thus removing noise.
2. Find the intensity gradients of the filter image (i.e. 1st derivative), including

both the gradient magnitude and direction.
3. Apply non-maximum suppression to thin the edges.
4. Apply double threshold to determine potential edges.
5. Using hysteresis method, follow the strong edge points to produce the

final definitive edge.

The first two steps are:
Step 1: Filtering the image 𝑓 𝑥, 𝑦 with a Gaussian filter is similar to that of LoG edge
detector. It removes noise from the image. You can adjust the value of 𝜎 to match the
required degree of filtering. High 𝜎 removes more noise, but will also blur edges more.
The result is a smoothed image 𝑓) 𝑥, 𝑦 .
Using Matlab, the function fspecial generates the filter kernel for a Gaussian filter with
the specified 𝜎 value.
Step 2: Compute the intensity gradients through out the image. This includes the first
derivatives in x an y directions. These can be computed using the formula in slide 4
above, to obtain the magnitude 𝑀) 𝑥, 𝑦 and the directional angle 𝛼 𝑥, 𝑦 , where

𝑀) 𝑥, 𝑦 =
𝜕𝑓7 𝑥
𝜕𝑥

8

+ 𝜕𝑓) 𝑦
𝜕𝑦

!

and 𝛼 𝑥, 𝑦 = tan9: ;<* = /;=
;<* ? /;?

Note that the edge angle is then “quantized” to one of four directions: horizontal,
vertical, and the two diagonals (i.e.	 0°, 90°, 45°, 135°) respectively. In some
algorithms, more directions than four are used.

Lecture 8 Slide 14PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Canny Detector – Step 2: Gradient Magnitude & Direction

! Step 1: The Filtering the image 𝑓 𝑥, 𝑦 with a Gaussian filter is similar to that of
LoG edge detector. It removes noise from the image.

! Step 2: Compute the gradient at each pixel. Need to compute BOTH magnitude
and direction:

! Angle quantized to one of four directions: horizontal (0°), vertical (90°) and the
two diagonals (45°, 135°).

𝑀0 𝑥, 𝑦 =
𝜕𝑓0 𝑥
𝜕𝑥

"

+
𝜕𝑓0 𝑦
𝜕𝑦

"

𝛼 𝑥, 𝑦 = tan-'
𝜕𝑓0 𝑦 /𝜕𝑦
𝜕𝑓0 𝑥 /𝜕𝑥

The problem of using Gaussian filter to reduce noise is that it tends to blur the image
and makes the edge thicker. This has the undesirable effect of turning an edge into
two edges, one on either side of the true edge.
Step 3 of the Canny algorithm is to thin the blur edge by the following steps:
1. The gradient calculation from Step 2 identify a possible edge point q. We have

both the gradient magnitude and the direction.. The direction perpendicular to
the gradient is occupied by neighbours pixels p and r.

2. Compare p and r intensity with q. Since they are lower than q, set p and r intensity
to zero.

3. Repeat steps 1 and two on all pixels detected along the edge.

In this way, all edges are thinned to single pixel.

Lecture 8 Slide 15PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Canny Detector – Step 3: Non-Maximum Suppression

! Step 3 of Canny is to use an edge thinning method to combat the smoothing
effect of Gaussian smoothing.

1. Compare intensity at q with neighbours along gradient direction p and r.
2. Since q is maximum, set p and r to zero.
3. Repeat for all pixels.

current pixel q

Gradient direction

After step 3 of non-maximum suppression, the remaining edge pixels provide a more
accurate and thinner representation of real edges in an image. However, there may
still be false edges due to noise or colour variations. To account for these spurious
edges, it is essential to remove edge pixels with a weak gradient value and preserve
edge pixels with a high gradient value.
This is accomplished by selecting high and low threshold values, and classify every
pixel gradient as one of three types: strong, weak and suppress. All suppressed pixels
are NOT edge. All strong pixels are definitely on the edge. The weak pixels are the
”maybe” candidates, feeding into Step 5, edge tracking by hysteresis.

Lecture 8 Slide 16PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Canny Detector – Steps 4: Double thresholding

! Noise can produce false edges even after Step 3.
! Use higher and lower thresholds to categorize each pixel.
! Gradient magnitude > high threshold → strong pixel.
! Low threshold ≤ Gradient magnitude ≤ high threshold → weak pixel.
! Gradient magnitude < low threshold → suppress pixel.

strong

weak

suppress

Step 5 involves “tracking” edges, but considering neighbourhood of each pixel. The
diagram above shows five edge segments: A to E.
A and B are sure-edges as they are above ‘High’ threshold.
D is a sure non-edge.
Both ‘E’ and ‘C’ are weak edges but since ‘C’ is connected to ‘B’ which is a sure edge,
‘C’ is also considered as a strong edge.
‘E’ is not connected to any strong pixels, therefore it is discarded.

Lecture 8 Slide 17PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Canny Detector – Steps 5: Edge tracking by Hysteresis

! Finally, edge is tracked by its neighbourhood connections (hysteresis).
! A pixels are all strong. So A must be an edge.
! D pixels are all suppressed and therefore are not considered in Step 5.
! E pixels are all weak and none of their neighbours are strong – suppress.
! B is strong, but C is weak. However, C pixels are neighbour to strong, so

reclassified as strong.
strong

weak

suppress

The top-left image shows a 512 × 512 head CT image. The goal is to extract the edges
of the outer contour of the brain (the grey region in the image), the contour of the
spinal region (shown directly behind the nose, toward the front of the brain), and the
outer contour of the head. We wish to generate the thinnest, continuous contours
possible, while eliminating edge details related to the grey content in the eyes and
brain areas.
Top-right image shows the result of thresholding the gradient image that was first
smoothed using a 5 × 5 averaging “square” kernel. The threshold required to achieve
the result shown was 15% of the maximum value of the gradient image.
The bottom-left image shows the result obtained with the LoG edge-detection
algorithm with a threshold of 0.002, 𝜎 = 3, and a kernel of size 19 × 19.
The best result is that of bottom-right, which was obtained using the Canny algorithm
with TL = 0.05, TH = 0.15 (3 times the value of the low threshold), 𝜎 = 2, and a kernel
of size 13 × 13.

Lecture 8 Slide 18PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Compare Canny with other edge detection methods

Edge detection
with LoG method

𝑓(𝑥, 𝑦)
Edge detection with

smoothing (5x5 square
kernel) then thresholding

Edge detection with
Canny method

This table summarizes the various edge detection techniques discussed earlier.
Without doubt, the Canny method produces best results, but computationally more
complex. Canny method is suitable as a programmed solution while the others are
more suitable for direct implementation on digital hardware (i.e. custom chip or FPGA
implementations).

Lecture 8 Slide 19PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Comparison of Edge detection methods

Method Pros Cons
Sobel Simple; detect edges

and the orientations
Sensitive to noise;
inaccurate

Laplacian + zero
crossing

Detect edges and
direction; isotropic

Sensitive to noise;
interaction between
nearby edges

Laplacian of
Gaussian (LoG)

Correct places of edges;
handle different areas
and scales

Malfunction at curves
and corners; cannot
find orientations

Canny Low error rate; good
localization; accurate;
not sensitive to noise

More complex;
sometimes produce
false zero crossings

The Hough transform is a technique which can be used to isolate features of a
particular shape within an image. Because it requires that the desired features be
specified in some parametric form, the Hough transform is most commonly used for
the detection of regular curves such as lines, circles, ellipses, etc. or any feature
boundaries which can be described by regular curves.
The main advantage of the Hough transform technique is that it is tolerant of gaps in
feature boundary descriptions and is relatively unaffected by image noise.
To explain the idea of Hough Transform which was introduced in 1960’s, consider a
number of edge points detected by previous methods. We want to find a line in all
these edge points.
By inspection, you might consider the point in blue belong to a line with equation:

 𝑦 = 𝑚𝑥 + 𝑐 .
Let us know consider one specific point on this line, say 𝑥+ , 𝑦+ . We substitute this
point to the line equation. Now we have the equation on the right:

𝑐 = −𝑚𝑥+ +𝑦+
Since 𝑥+ , 𝑦+ are given and fixed, this equation describes all lines with 𝑚, 𝑐 values
that pass through the point 𝑥+ , 𝑦+ .
In other words, 𝑥, 𝑦 coordinate is in image space, and 𝑚, 𝑐 values are the
parameters of lines, but now in parameter space.

Lecture 8 Slide 20PYKC 18 Feb 2025 DE4 – Design of Visual Systems

The Hough Transform – Basic Idea

! Previous method detected edge
points 𝑥1 , 𝑦1 as shown here.

! How to detect line 𝑦 = 𝑚𝑥 + 𝑐?

! Consider the point 𝑥1 , 𝑦1 . Its
equation is given by:

𝑦1 = 𝑚𝑥1 + 𝑐 𝑐 = −𝑚𝑥1 + 𝑦1

Parameter space

For a given point 𝑥+ , 𝑦+ , all lines through this point in the image space maps to a
single line in the parameter space.

So each blue point on the left maps to a blue line on the right. The intersection of
these blue lines provides the parameter (𝑚, 𝑐) for the line in the image space.
Therefore, the equation of the line is identified. That is, line is detected.
Consider the GREEN edge point. This will also result in the green line in the parameter
space, but it does not provide a common intersection to all the other blue lines (i.e. it
intersect them at difference locations).

Image Space Parameter Space

POINT LINE
LINE POINT

Lecture 8 Slide 21PYKC 18 Feb 2025 DE4 – Design of Visual Systems

! All lines through edge point (𝑥1 , 𝑦1) maps onto the blue line in the parameter space.
! Another point on the line in image space maps to another line in the parameter space but

intersect at the same (𝑚, 𝑐) values.
! Now map a few more points on the edge line, will result in same intersection.

𝒄 = −𝒎𝑥1 + 𝑦1

Image Space Parameter Space

𝒚𝒊 = 𝑚𝒙𝒊 + 𝑐

The Hough Transform – Image Space vs Parameter Space

Now we have defined the Hough Transform as one that maps edge points in the image
space to lines in the parameter space. Provided that we find the common intersection,
we can detect the line. How is this achieved in a step-by-step algorithm?
The above slides explain how this can be achieved.
Step 1: Divide the parameter space 𝑚, 𝑐 into discrete values.
Step 2: Create a new array 𝐻 𝑚, 𝑐 for each discrete parameter values. Each cell in the
array stores the number of times that parameter pair is detected.
Step 3: Initialize the array to have zero.
Step 4: For each edge point, calculate the 𝑚, 𝑐 values and increment the
corresponding array bin count by 1.
Step 5: After this is done for ALL edge points, the bins with the largest count within a
locality identify the 𝑚, 𝑐 values of the detected line.

Lecture 8 Slide 22PYKC 18 Feb 2025 DE4 – Design of Visual Systems

! Step 1: Quantize parameter space 𝑚, 𝑐 .

! Step 2: Create a counting array 𝐻 𝑚, 𝑐 .

! Step 3: Set 𝐻 𝑚, 𝑐 = 0 for all 𝑚, 𝑐 .

! Step 4: For each edge point 𝑥1 , 𝑦1
𝐻 𝑚, 𝑐 = 𝐻 𝑚, 𝑐 + 1

So for all points on the straight line, this
increase the count at 𝑚, 𝑐 .

! Step 5: Identify the local maxima in
𝐻 𝑚, 𝑐 .

The Hough Transform – Line Detection Algorithm

c

m

image

Parameter
counting bins

𝐻(𝑚, 𝑐)

𝑓(𝑥, 𝑦)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 4 0 0 0
0 0 1 6 0
0 1 0 0 0
0 0 0 0 0

Here is an example of using Hough Transform on an image with four lines.
This results in the parameter space sets of lines that identifies four significant
intersection with high frequency of occurrence. These provide the four set of
parameters for the four lines in the original image.

Lecture 8 Slide 23PYKC 18 Feb 2025 DE4 – Design of Visual Systems

The Hough Transform – Multiple line detection

Image Space Parameter Space

The previous discussion works in theory, but not in practice. The reason is that the
parameter 𝑚, the gradient, has the range of ±infinity! This means that the parameter
space bin array is infinite, or at least very large.
The solution is NOT to use the line equation with (𝑚, 𝑐), but use another equation to
represent the straight line.
For the point (𝑥+ , 𝑦+) shown above, which is a distant 𝜌 from the origin and is on a line
which sustain an angle 𝜃 relative the x-axis. Simple trigonometry shows that:

𝑥+ = 	𝜌	sin	𝜃, and 𝑦+ = 	𝜌	cos	𝜃
Hence, 𝑥+sin	𝜃 = 	𝜌	sin!𝜃, and 𝑦+cos	𝜃 = 	𝜌	cos!𝜃.
Summing these two equation gives us:

 𝑥+sin	𝜃 +	𝑦+ cos	𝜃 = 𝜌	sin!𝜃 + 𝜌	cos!𝜃 = 𝜌.
Therefore, if we use the parameter space (𝜃, 𝜌) instead of (𝑚, 𝑐), all straight lines in
the image space through (𝑥+ , 𝑦+) now maps to a sinewave in the parameter space.
Two points on the line that is at an angle 𝜃, to the x-axis and it perpendicular distant
form the original is 𝜌,, will map to two sinewaves that intersection at (𝜃, , 𝜌-).
The reasons that this mapping is much better is because both 𝜃 is always between 0
and 𝜋. The perpendicular distance 𝜌, is also finite.

Lecture 8 Slide 24PYKC 18 Feb 2025 DE4 – Design of Visual Systems

The Hough Transform – Better Parameters

! Problem with using 𝑚, 𝑐 parameter space.
! Range of slope of line is huge:

−∞ ≤ 𝑚 ≤ ∞
! Not viable for limited size of counting array.

𝒙	sin𝜃 + 𝒚	cos𝜃 + 𝜌 = 0 𝑥	sin𝜽 + 𝑦	cos𝜽 + 𝝆 = 0

! Solution: do not map line to 𝑦 = 𝑚𝑥 + 𝑐
! Instead use a different equation for a line:

𝑥	sin𝜃 + 𝑦	cos𝜃 + 𝜌 = 0
! The orientation 𝜃 is finite: 0 ≤ 𝜃 ≤ 𝜋
! The distance 𝜌 from origin is also finite.

Image Space Parameter Space

(𝑥$, 𝑦$)

In using Hough Transform, there are a few practical decisions to be made. How should
one quantize the parameter space. For example, we know the angle 𝜃 is between 0
and 𝜋. How many incremental angle steps should we use? This decision is image
dependent and require engineering judgement depending on what we want to
achieve.
Also, once we have the accumulated counts in the parameter space, there will be
many high values. How should the peaks be counted and in how large a local area?

Lecture 8 Slide 25PYKC 18 Feb 2025 DE4 – Design of Visual Systems

The Hough Transform – Design consideration

! What is the dimension of the parameter counting array?
! Too many bins, noise will cause lines to be missed.
! Too few bins, different lines will merge together.

! How many lines?
! Count the peaks in the array (thresholding),

! How to handle inaccurate edge locations?
! Increment nearby bins instead of just individual bins.

Here is an example of using Hough Transform to identify all the straight lines in this
image. The top-right image shows all the edge points after edge detection.
The bottom-left image is the Hough Transform in the parameter space showing the
frequency count of the parameters for the edge points. The high count bins are
highlighted in red. There are nine lines identified.
The bottom-right image show all the identified lines.

Lecture 8 Slide 26PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Example of Hough Transform in line detection

Input
image

Detected
edge

Hough
Transform
𝐻 𝜃, 𝜌

Detected
lines

The Hough transform can also be used to detect circuits from the edge points image.
For simplicity, let us assume that we KNOW the radius of the circuit. Then the
parameter space is in (𝑎, 𝑏), the centre of the circle.
The mapping from image space to parameter space is the equation shown above,
which is also an equation for a circle. That is, given a point 𝑥+ , 𝑦+ in the image space,
all circles through this point also maps to a circuit in the parameter space.
Therefore the parameter (i.e. the centre coordinate of the circle) is given by the
common intersections of all the circles for the blue points in the image space as
shown.

Lecture 8 Slide 27PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Hough Transform: Detection of Circle (known r)

𝒙𝒊 − 𝑎 " + 𝒚𝒊 − 𝑏 " = 𝑟" 𝒂 − 𝑥1 " + 𝒃 − 𝑦1 " = 𝑟"

Image Space Parameter Space

! For circle of known radius, and a give point 𝑥1 , 𝑦1 .	
! All circles through this point maps to a circle in the parameter space.
! The intersection of all edge points gives the parameter 𝑎, 𝑏 .

Finally, here is an example of using Hough Transform to identify the location of two
types of coins: penny with radius 𝑟6 and quarters with radius 𝑟!.
After the edge points are found, we use two Hough Transforms, one for pennies and
another for quarters. They result in the clearly identified dots in the two separate
parameter spaces as shown.

Lecture 8 Slide 28PYKC 18 Feb 2025 DE4 – Design of Visual Systems

Hough Transform: Circle detection example

Image of coins Edge points Hough
Transform
𝑯𝟏 𝒂, 𝒃 for

penny (𝒓 = 𝒓𝟏)

Hough
Transform
𝑯𝟐 𝒂, 𝒃 for

quarters (𝒓 = 𝒓𝟐)

